首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15320篇
  免费   1283篇
  国内免费   3360篇
安全科学   1659篇
废物处理   342篇
环保管理   4071篇
综合类   8885篇
基础理论   1503篇
环境理论   2篇
污染及防治   1230篇
评价与监测   1237篇
社会与环境   821篇
灾害及防治   213篇
  2023年   199篇
  2022年   342篇
  2021年   364篇
  2020年   441篇
  2019年   403篇
  2018年   352篇
  2017年   547篇
  2016年   664篇
  2015年   768篇
  2014年   752篇
  2013年   1078篇
  2012年   1164篇
  2011年   1234篇
  2010年   856篇
  2009年   880篇
  2008年   655篇
  2007年   1091篇
  2006年   1034篇
  2005年   821篇
  2004年   696篇
  2003年   729篇
  2002年   633篇
  2001年   520篇
  2000年   501篇
  1999年   439篇
  1998年   304篇
  1997年   277篇
  1996年   259篇
  1995年   221篇
  1994年   195篇
  1993年   172篇
  1992年   135篇
  1991年   98篇
  1990年   81篇
  1989年   81篇
  1988年   73篇
  1987年   70篇
  1986年   45篇
  1985年   33篇
  1984年   49篇
  1983年   56篇
  1982年   58篇
  1981年   72篇
  1980年   79篇
  1979年   72篇
  1978年   51篇
  1977年   47篇
  1973年   44篇
  1972年   38篇
  1971年   58篇
排序方式: 共有10000条查询结果,搜索用时 890 毫秒
1.
为了完善现有煤与瓦斯共采技术,创新煤与瓦斯共采方法,对错层位巷道布置下的煤与瓦斯共采系统展开研究,利用相似模拟试验,分析错层位巷道布置覆岩运动情况,预测其开采围岩裂隙发育和瓦斯运移形式,提出了创新煤与瓦斯共采技术构想。研究结果表明:采空区覆岩三带高度随接续工作面的增加而增大,相邻采空区垮落矸石压实区呈现“O-L-O”形变化,多个相邻采空区覆岩出现大“O”形圈裂隙带;相邻采空区内瓦斯可实现相互运移,大“O”形圈裂隙带内赋存大量瓦斯气体;研究提出了地面钻井抽采瓦斯、走向高位瓦斯抽采巷和外错尾巷穿层钻孔3种煤与瓦斯共采技术,比传统巷道布置情况下的煤与瓦斯共采技术在安全、经济等方面更具优势。  相似文献   
2.
Weather variability has the potential to influence municipal water use, particularly in dry regions such as the western United States (U.S.). Outdoor water use can account for more than half of annual household water use and may be particularly responsive to weather, but little is known about how the expected magnitude of these responses varies across the U.S. This nationwide study identified the response of municipal water use to monthly weather (i.e., temperature, precipitation, evapotranspiration [ET]) using monthly water deliveries for 229 cities in the contiguous U.S. Using city‐specific multiple regression and region‐specific models with city fixed effects, we investigated what portion of the variability in municipal water use was explained by weather across cities, and also estimated responses to weather across seasons and climate regions. Our findings indicated municipal water use was generally well‐explained by weather, with median adjusted R2 ranging from 63% to 95% across climate regions. Weather was more predictive of water use in dry climates compared to wet, and temperature had more explanatory power than precipitation or ET. In response to a 1°C increase in monthly maximum temperature, municipal water use was shown to increase by 3.2% and 3.9% in dry cities in winter and summer, respectively, with smaller changes in wet cities. Quantifying these responses allows urban water managers to plan for weather‐driven variability in water use.  相似文献   
3.
Devils Lake is a terminal lake located in northeast North Dakota. Because of its glacial origin and accumulated salts from evaporation, the lake has a high concentration of sulfate compared to the surrounding water bodies. From 1993 to 2011, Devils Lake water levels rose by ~10 m, which flooded surrounding communities and increased the chance of an overspill to the Sheyenne River. To control the flooding, the State of North Dakota constructed two outlets to pump the lake water to the river. However, the pumped water has raised concerns about of water quality degradation and potential flooding risk of the Sheyenne River. To investigate these perceived impacts, a Soil and Water Assessment Tool (SWAT) model was developed for the Sheyenne River and it was linked to a coupled SWAT and CE‐QUAL‐W2 model that was developed for Devils Lake in a previous study. While the current outlet schedule has attempted to maintain the total river discharge within the confines of a two‐year flood (36 m3/s), our simulation from 2012 to 2018 revealed that the diversion increased the Sheyenne River sulfate concentration from an average of 125 to >750 mg/L. Furthermore, a conceptual optimization model was developed with a goal of better preserving the water quality of the Sheyenne River while effectively mitigating the flooding of Devils Lake. The optimal solution provides a “win–win” outlet management that maintains the efficiency of the outlets while reducing the Sheyenne River sulfate concentration to ≤600 mg/L.  相似文献   
4.
为了研究循环载荷下的煤体裂隙演化特征,在不同应力水平和不同频率条件下分别进行煤样破坏力学及声发射试验。结果表明:应力-应变曲线呈疏-密-疏的变化特征,对应的振铃数柱状图呈U型;上限应力点的应变值、累积能量、撞击计数均随循环次数增加而上升,曲线呈倒S型;煤裂隙演化经历了原始裂隙闭合、新生裂隙稳定发育和裂纹贯穿破坏等3个不同阶段;循环载荷的应力水平和加载频率对煤体疲劳寿命的影响具有差异性,对煤体裂隙演化和破坏模式均有明显影响。  相似文献   
5.
本系统基于气体浓度光学分析方法理论朗伯-比尔(Lambert-Beer)定律、光谱气体检测技术开发,实现了对煤矿火灾与瓦斯灾害超前预警、灾害产生的有毒有害气体实时监测和煤矿环境气体爆炸危险性辨识,对于煤矿灾害防治、救灾过程中杜绝次生灾害,保障煤矿工人及救护队员的生命安全,促进煤矿安全生产具有重要意义。  相似文献   
6.
随着遥感数据源的不断丰富,遥感技术不断提高,可以解决越来越多的水环境问题。指出了当前水生态环境管理方面的主要需求,结合目前遥感技术的发展,对国内外的水环境遥感研究进展进行综述。以湖泊富营养化监测与评估、核电站温排水遥感监测及城市黑臭水体遥感监测为案例,具体阐述遥感在水环境管理中的应用方法及成效。未来水生态环境管理发展趋势将以水污染防治为主向水污染防治和水生态修复与保护并重发展。基于此趋势,提出遥感在水生态修复的应用潜力,利于更多地方部门积极有效应用遥感技术,解决水生态环境问题。  相似文献   
7.
Climate change poses water resource challenges for many already water stressed watersheds throughout the world. One such watershed is the Upper Neuse Watershed in North Carolina, which serves as a water source for the large and growing Research Triangle Park region. The aim of this study was to quantify possible changes in the watershed’s water balance due to climate change. To do this, we used the Soil and Water Assessment Tool (SWAT) model forced with different climate scenarios for baseline, mid‐century, and end‐century time periods using five different downscaled General Circulation Models. Before running these scenarios, the SWAT model was calibrated and validated using daily streamflow records within the watershed. The study results suggest that, even under a mitigation scenario, precipitation will increase by 7.7% from the baseline to mid‐century time period and by 9.8% between the baseline and end‐century time period. Over the same periods, evapotranspiration (ET) would decrease by 5.5 and 7.6%, water yield would increase by 25.1% and 33.2%, and soil water would increase by 1.4% and 1.9%. Perhaps most importantly, the model results show, under a high emission scenario, large seasonal differences with ET estimated to decrease by up to 42% and water yield to increase by up to 157% in late summer and fall. Planning for the wetter predicted future and corresponding seasonal changes will be critical for mitigating the impacts of climate change on water resources.  相似文献   
8.
珠江口表层水中多环芳烃的分布特征及健康风险评估   总被引:1,自引:0,他引:1  
分别于2015年2、5、8、11月在珠江八大入海口采集表层水体样品,应用固相萃取富集法对该区域表层水体中16种USEPA优控多环芳烃(PAHs)的时空分布特征进行分析,并利用终生致癌风险增量模型(ILCR)对该区域的饮水健康风险进行评价。结果表明:珠江口4个季度所采集的水样中,∑15PAHs的浓度范围为18.0~50.3 ng/L,含量处于中等水平。其中7种强致癌性∑7PAHs的浓度范围为1.53~3.73 ng/L,占∑15PAHs的5.89%~11.1%,∑15PAHs和∑7PAHs在枯水期(2、11月)样品中明显高于丰水期(5、8月)。就组成特征而言,各采样点PAHs以3、4环为主。珠江口表层水中非致癌类PAHs的危害商数值为0.99×10~(-5)~2.73×10~(-5),远低于USEPA规定的阈值(1);致癌类PAHs产生的健康风险为6.50×10~(-8)~2.37×10~(-7),其中Ba P导致的饮水途径健康风险最高,所有点位致癌类PAHs的健康风险均低于USEPA推荐的对致癌物质最大可接受风险水平(10~(-6)),表明珠江口表层水中PAHs尚不具备严重的致癌风险,但是仍然存在潜在的健康风险,需要重点控制和管理。  相似文献   
9.
Fifty percent of the dry zone areas in Sri Lanka have fluoride levels above 1 ppm. This paper discusses the ground conditions and recommends an appropriate range of fluoride in drinking water which can support preventive practices for improving the oral health of children 8-years old and younger. In efforts to address the Chronic Kidney Disease of Unknown etiology (CKDU), water treatment to reduce contaminant level in potable water has been implemented. Such treatment would also remove fluoride and has resulted in potable water with various fluoride levels, depending on concentrations in the raw water. While it is important to reduce fluoride levels, it is important to have appropriate residual levels for prevention of dental caries. It needs, however, to be noted fluoride in excess can cause dental fluorosis. In Sri Lanka's dry zone areas increasing prevalence of dental fluorosis with decreasing prevalence of dental caries has been noted. Consumption of tea and powdered milk could increase total intake of fluoride. Fluoridated toothpaste, when used properly, may, however, result in negligible intake of fluoride. Sri Lanka's hot tropical climate which results in substantial intake of fluids reinforces the need to consider reduction in water fluoride. Consideration of local studies and international standards indicate fluoride levels should be in the range of 0.225–0.500 ppm. In the range of 0.225–0.500 ppm, the prevalence of dental fluorosis and caries was only 14% and 8%, respectively, in an endemic district. When fluoride levels are above 0.500 ppm, the issue of dental fluorosis shall need to be addressed. When levels are below 0.225 ppm, oral health care services shall need to be directed at preventing dental caries.  相似文献   
10.
Waste accumulation is a grave concern and becoming a transboundary challenge for environment. During Covid-19 pandemic, diverse type of waste were collected due to different practices employed in order to fight back the transmission rate of the virus. Covid-19 was proved to be capricious catastrophe of this 20th century and even not completely eradicated from the world. The havoc created by this imperceptible quick witted, pleomorphic deadly virus can't be ignored. Though a number of vaccines have been developed by the scientists but there is a fear of getting this virus again in our life. Medical studies prove that immunity drinks will help to reduce its reoccurrences. Coconut water is widely used among all drinks available globally. Its massive consumption created an incalculable pile of green coconut shells around the different corners of the world. This practice generating enormous problem of space acquisition for the environment. Both the environment and public health will benefit from an evaluation of quantity of coconut waste that is being thrown and its potential to generate value added products. With this context, present article has been planned to study different aspects like, coconut waste generation, its biological properties and environmental hazards associated with its accumulation. Additionally, this review illustrates, green technologies for production of different value added products from coconut waste.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号